Numerical Computation of Rank-One Convex Envelopes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Computation of Rank - One Convex

We describe an algorithm for the numerical computation of the rank-one convex envelope of a function f : Mm×n → R. We prove its convergence and an error estimate in L∞.

متن کامل

Linear Convergence in the Approximation of Rank-one Convex Envelopes

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope f of a given function f : Rn×m → R, i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington. Mathematics Subject Classification. 65K10, 74G15, 74G65, 74N99. Received: May 27...

متن کامل

A numerical iterative scheme for computing finite order rank-one convex envelopes

Abstract. It is known that the i-th order laminated microstructures can be resolved by the k-th order rank-one convex envelopes with k ≥ i. So the requirement of establishing an efficient numerical scheme for the computation of the finite order rank-one convex envelopes arises. In this paper, we develop an iterative scheme for such a purpose. The 1-st order rank-one convex envelope R1f is appro...

متن کامل

Convex Envelopes for Low Rank Approximation

In this paper we consider the classical problem of finding a low rank approximation of a given matrix. In a least squares sense a closed form solution is available via factorization. However, with additional constraints, or in the presence of missing data, the problem becomes much more difficult. In this paper we show how to efficiently compute the convex envelopes of a class of rank minimizati...

متن کامل

On the Local Structure of Rank-one Convex Hulls

In this note we prove that if K is a compact set of m×n matrices containing an isolated point X with no rank-one connection into the convex hull of K \ {X}, then the rank-one convex hull separates as K = ( K \ {X} )rc ∪ {X}. This is an extension of a result of P. Pedregal, which holds for 2× 2 matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 1999

ISSN: 0036-1429,1095-7170

DOI: 10.1137/s0036142997325581